CATEGORY:

TANK/PIPELINE DEGASSING SYSTEM

BACT Size:

Minor Source BACT

THERMAL OXIDIZING UNIT - PORTABLE

BACT Determination Number:

213

BACT Determination Date:

2/22/2019

Equipment Information

Permit Number:

N/A -- Generic BACT Determination

Equipment Description:

THERMAL OXIDIZING UNIT - PORTABLE

Unit Size/Rating/Capacity:

ALL

Equipment Location:

BACT Determination Information

ROCs	Standard:	50 ppmvd @ 3% O2 as Hexane		
		Use of natural gas or propane/LPG as supplemental fuel		
	Basis:	Achieved in Practice		
NOx	Standard:	60 ppmvd @ 3% O2 or 0.073 lb/MMBtu		
	Technology Description:	Use of natural gas or propane/LPG as supplemental fuel		
	Basis:	Achieved in Practice		
SOx	Standard:	40 ppmv as H2S		
OOX	Technology Description:	Use of natural gas or propane/LPG as supplemental fuel		
	Basis:	Achieved in Practice		
PM10	Standard:			
;	Technology Description:	Use of natural gas or propane/LPG as supplemental fuel		
	Basis:	Achieved in Practice		
PM2.5	Standard:			
1 1412.0		Use of natural gas or propane/LPG as supplemental fuel		
	Basis:	Achieved in Practice		
CO	Standard:			
	Technology Description:	Use of natural gas or propane/LPG as supplemental fuel		
	Basis:	Achieved in Practice		
LEAD	Standard:			
	Technology			
	Description:			
	Basis:			

Comments: See BACT Determination Evaluation: VOC: 50 ppmvd @ 3% O2 as Hexane; the operation of the thermal oxidizer shall continue until the gaseous VOC concentration within the tank/pipeline is reduced to 5,000 ppmv, measured as methane, for at least one hour after degassing operations have ceased. NOx: Low NOx burner with emission concentration of 60 ppm @ 3% O2 or 0.073 lb/MMBtu. T-BACT is equivalent to BACT.

District Contact: Felix Trujillo

Phone No.: (916) 874 - 7357

email: ftrujillo@airquality.org

Printed: 2/21/2019

BEST AVAILABLE CONTROL TECHNOLOGY & TOXIC BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION

	DETERMINATION NO.:	213
	DATE:	02/22/19
	ENGINEER:	Felix Trujillo, Jr.
Category/General Equip Description:	Tank/Pipeline Degassing System	
Equipment Specific Description:	Thermal Oxidizing Unit - Portable	
Equipment Size/Rating:	Minor Source BACT	·
Previous BACT Det. No.:	121	

This BACT determination will be made for a portable thermal oxidizing unit serving a tank/pipeline at a refinery, bulk terminal or fuel storage unit. This BACT determination will update determination #121.

The District reviewed all previously reviewed BACT clearinghouses and rules (EPA, CARB, SMAQMD, SCAQMD, SJVAPCD, SDCAPCD, SBAPCD, VCAPCD, BAAQMD, and Texas Commission on Environmental Quality) to determine if there have been any updates. The District found no changes or any new rules that would apply to this type of operation, other than SMAQMD's Rule 419 - NOx from Miscellaneous Combustion Units (10/25/18) and VCAPCD's Rule 74.34 - NOx Reductions from Miscellaneous Sources (12/13/16). There were no degassing operations that operated in Sacramento County under the previous BACT (#121). Therefore, all considerations made under the previous BACT will remain the same, unless otherwise noted.

BACT ANALYSIS

A. ACHIEVED IN PRACTICE (Rule 202, §205.1a)

The following control technologies are currently employed as BACT for tank degassing systems by the following air pollution control districts:

District/Agency	Best Available Control Technology (BACT) Requirements			
	BACT Source: I RBLC ID	EPA RACT/BACT/LAER Clearinghouse CA-1048 (5/24/01)		
	For Por	table Tank Degassing System		
	VOC 50 ppmv as hexane [SCAQMD]			
110 ED 4	NOx	N/A - No BACT determinations found		
US EPA	SOx	N/A – No BACT determinations found		
	PM10	N/A – No BACT determinations found		
	PM2.5	N/A – No BACT determinations found		
	co	N/A – No BACT determinations found		
	SCAQME	ARB BACT Clearinghouse O Permit No. 384630 (5/24/01) CT determination published in the ARB BACT Clearinghouse is at least 13 .		
	ARB BACT Clearinghouse			
	VOC 50 ppmv as hexane [SCAQMD]			
ARB	NOx	No standard		
	SOx	No standard		
	PM10	No standard		
	PM2.5	No standard		
	CO No standard			
	СО			

District/Agency	Agency Best Available Control Technology (BACT) Requirements				
	BACT Source: SMAQMD BACT Clearinghouse (last updated: 3/8/16)				
	For Por	table Tank Degassing System			
	voc	50 ppmv as Hexane; the operation of the thermal oxidizer shall continue until the gaseous VOC concentration within the tank/pipeline is reduced to 5,000 ppmv, measured as methane, for at least one hour after degassing operations have ceased.			
	NOx	Burners fired on mixture of process gas and supplemental fuel: 1. Use of natural gas or propane as supplemental fuel for process temperatures ≤ 800 °F. 2. NOx emission limit of 60 ppm @ 3% O₂ or 0.073 lb/MMBtu for process temperatures of > 800 °F. (A)			
SMAQMD	NOX	Burners fired on 100% Natural gas or Propane: 3. NOx emission limit of 30 ppm at 3% O₂ for process temperatures ≤ 800 °F. 4. NOx emission limit of 60 ppm @ 3% O₂ or 0.073 lb/MMBtu for process temperatures of > 800 °F.			
OW ROWE	SOx	Use of natural gas or propane as supplemental fuel; 40 ppmv as H ₂ S at inlet			
	PM10	Use of natural gas or propane as supplemental fuel			
	PM2.5	Use of natural gas or propane as supplemental fuel			
	СО	Use of natural gas or propane as supplemental fuel			
	While emiss Upon furt in Sacram order to a temperatu SCAQMD concentration should be on natura item 2 from the street of the stre	facility has source tested these types of units at the South Coast AQMD operating on propane and process gas fuel mixture and have met this ision limit. The review of tank degassing operations with the use of thermal oxidizers mento County, none have operated at a temperature lower than 800 °F. In achieve the low VOC concentration, the burner would need to operate at a unregreater than 800 °F. As noted by footnote A of the above table, that tested low NOx combustors and they have met the 60 ppm @ 3% O2 ation or 0.073 lb/MMBtu on process gas. Therefore, low NOx combustors able to meet the 60 ppm @ 3% O2 NOx concentration or 0.073 lb/MMBtu I gas. The applicable NOx BACT requirement will therefore be reduced to the above table and will be deemed achieved in practice due to the st results included in Appendix B.			

District/Agency	Best Available Control Technology (BACT) Requirements		
SMAQMD	RULE REQUIREMENTS: Rule 420 Sulfur Content of Fuels (8/13/81) Section 301 limits the sulfur content of any gaseous fuel to 50 gr/scf, calculated as H ₂ S at standard conditions (equivalent to 809 ppmv as H ₂ S). Rule 419 NOx from Miscellaneous Combustion Units (10/25/18) This rule is applicable to miscellaneous combustion units with a total rated heat input capacity of 5 MMBtu/hr or greater located at a non-major stationary source and to units rated at 2 MMBtu/hr or greater located at a major source. Section 112 exempts air pollution control devices from the requirements of this rule. The thermal oxider is a control device and is therefore not subject to the requirements of this rule.		
		SCAQMD LAER/BACT Determinations D Permit No. 384630 (5/24/01)	
	For Por	table Tank Degassing System	
	voc	50 ppmv as hexane [SCAQMD] (A)	
	NOx	No standard	
South Coast AQMD	SOx	No standard	
	PM10	No standard	
	PM2.5	No standard	
	СО	No standard	
	(A) Pursi contr	uant to the evaluation for Permit No. 344630, this limit corresponds to a ol efficiency of 99%.	

District/Agency	Best Available Control Technology (BACT) Requirements				
	RULE REQUIREMENTS:				
	Regulation XI, Rule 1147 NOx Reductions from Miscellaneous Sources (9/9/11) Requirements Table Rule 1147				
	Table 1 – NOx NOx Emission Limit				
	Emission Limit Equipment	PPM @	3% O2, dry or Pound/mmBtu	ı heat input	
	Category(ies)		Process Temperature	·	
	Gaseous Fuel- Fired Equipment	≤ 800° F	> 800 ° F and < 1200° F	≥ 1200 ° F	
South Coast AQMD	Afterburner, Degassing Unit, Remediation Unit, Thermal Oxidizer, Catalytic Oxidizer or Vapor	30 ppm or 0.036 lb/mmBtu	60 ppm or 0.073 lb/mmBtu	60 ppm or 0.073 lb/mmBtu	
	used to incinerate air toxics, VOCs, or other vapors; or to heat a unit. The emission limit applies solely when burning 100% fuel and not when the burning incinerating air toxics, VOCs, or other vapors. The unit shall be tested certified to meet the emission limit while fueled with natural gas. These limits apply to burners that are only fueled on 100% natural gas. Burners that are fueled on 100% natural gas and are used for five minutes or less to bring a up to operating temperature are exempt from these limits per Section (g)(3)(Also, these limits do not apply to burners that are fueled on process gas a supplemental gas per Section (g)(3)(E). Pursuant to Rule 1147 Section g(3)(pilots are also exempt from the requirements of this rule.			not when the burner it shall be tested or gas. ral gas. Burners that or less to bring a unit er Section (g)(3)(B). In process gas and	
	Regulation XI, Rule 1149 Storage Tank and Pipeline Cleaning and Degassing (5/2/08) Section 1149(c)(1)(B) requires the VOC concentration of the degassed tanks to be reduced to less than 5,000 ppmv, measured as methane at least 1 hour after degassing has ceased. Section 1149(c)(8) requires the VOC concentration in the exhaust stream of any control device to be less than 500 ppmv, measured as methane. This is equivalent to a control device efficiency of 90%.				
	Rule 431.1 Sulfur C Section (c)(2) limits t	ontent of Gaseo the sulfur content	us Fuels (6/12/98) of a gaseous fuel to 40 pp	omv as H₂S.	

District/Agency	Best Available Control Technology (BACT	Best Available Control Technology (BACT) Requirements		
San Diego County APCD	BACT The SDCAPCD does not have a BACT determination for this source category. RULE REQUIREMENTS: Rule 62 Sulfur Content of Fuels (10/21/81) Section (b)(1) requires any gaseous fuel to contain no more than 10 grains of sulfur compounds, calculated as hydrogen sulfide, per 100 cubic feet of dry gaseous fuel at standard conditions (equivalent to 162 ppmv as H ₂ S).			
Bay Area AQMD	BACT The BAAQMD does not have a BACT determination for this source category. RULE REQUIREMENTS: Regulation 8 Organic Compounds Rule 5 Storage of Organic Liquids (10/18/06) Section 328.1 Requires control devices used for tank degassing purposes to meet an abatement efficiency of at least 90% by weight and operate the degassing equipment until the concentration of organic compounds in the tank is less than 10,000 ppm expressed as methane.			
San Joaquin Valley APCD	BACT Source: SJVAPCD BACT Guideline 7.1.13 (5/24/02) SJVAPCD BACT Guideline 7.1.13 does not include any Achieved in Practice technologies. The only technology that is listed under the technologically feasible category is a 98% destruction of exhausted vapors (thermal or catalytic oxidizer or equal). RULE REQUIREMENTS: Rule 4311 Flares (6/18/2009) This rule is applicable to refinery and non-refinery flares, except those operated at municipal waste landfills. Section 5.7 sets the NOx limit fro ground-level enclosed flares to the following standards: Type of Flare and Heat Release Rate In MMP4.1/br NOx (Ib/MMBtu)			
	in MMBtu/hr Without Steam-assist			
	< 10 MMBtu/hr	0.0952		
	10-100 MMBtu	0.1330		
	> 100 MMBtu	0.5240		
	With Steam-assist			
•	Truit Grount Goolet	·		

District/Agency	Best Available Control Technology (BACT) Requirements		
San Joaquin Valley APCD	Rule 4623 Storage of Organic Liquids (5/19/05) Sections 5.6.1.2 and 5.7.5.4.5 set a control efficiency requirement of 95% for control devices serving tank degassing operations. Section 5.7.5.4.1 requires the operation of the degassing equipment until the organic vapor concentration is 5,000 ppmv cless, or is 10% or less of the lower explosion limit (LEL), whichever is less.		
Santa Barbara APCD	BACT The SBAPCD does not have a BACT determination for this source category. RULE REQUIREMENTS: Rule 343 Petroleum Storage Tank Degassing (12/14/93) Section D.1. sets a control efficieny of 90% for control devices used in degassing storage tanks. Section E.2.a. sets a length of time for the venting of displaced gases into a control system base on the following equation: $t = \underbrace{2.3 V}_{Q}$ Where: t = time (hours) $V = \text{the physical volume of the headspace (cubic feet)}$ $Q = \text{flow rate through condenser (ft³/hr)}$		
	Rule 311 Sulfur Content of Fuels (10/23/78) Section B limits the sulfur conent of any gaseous fuel to 15 grains per 100 cubic feet (calculated as H ₂ S) at standard conditions (equaivalent to 239 ppmv as H ₂ S).		
Ventura County APCD	BACT The VCAPCD does not have a BACT determination for this source category. RULE REQUIREMENTS: Rule 74.27 Gasoline and ROC Tank Degassing Operations (11/8/94) Section B.1.b. sets a control efficieny of 95% for control devices used in degassing storage tanks and requires the operation of the degassing equipment until the vapor concentration in the tank is less than 10,000 ppmv, measured as methane, for at least one hour. Rule 64 Sulfur Conent of Fuels (4/13/99) Section (B)(1) limits the sulfur compounds of a gaseous fuel to 50 grains/100 scf (788 ppmv), calculated as H ₂ S at standard conditions. Rule 74.34 NOx Reductions from Miscellaneous Sources This rule is applicable to miscellaneous combustion units with a total rated heat input capacity of 5 MMBtu/hr or greater. Section C.1.a exempts air pollution control devices from the requirements of this rule. The thermal oxider is a control device and is therefore not subject to the requirements of this rule.		

District/Agency	Best Available Control Technology (BACT) Requirements	
Texas Commission on Environmental Quality	BACT The TCEQ does not have a BACT determination for this source category. RULE REQUIREMENTS: Title 30 Environmental Quality Part 1 Texeas Commission on Environmental Quality Chapter 115 Control of Air Pollution from Volatile Organic Compounds Subchapter F Miscellaneous Industrial Sources Division 3 Degassing of Storage Tanks, Transport Vessels, and Marine Vessels (2/17/11) Section 115.542(a)(1) sets control device efficiency of 90% for tank degassing operations. Section 115.542(b) requires the operation of the degassing equipment until the VOC concentration is less than 34,000 ppmv expressed as methane or less than 50% of the lower explosive limit (LEL).	

The following control technologies have been identified as the most stringent, achieved in practice control technologies:

BEST CONTROL TECHNOLOGIES ACHIEVED			
Pollutant	Standard	Source	
VOC	50 ppmv as Hexane; and 1. The operation of the thermal oxidizer shall continue until the gaseous VOC concentration within the tank/pipeline is reduced to 5,000 ppmv, measured as methane, for at least one hour after degassing operations have ceased (A).	SCAQMD (BACT) SCAQMD (Rule 1149)	
	 The operation of the thermal oxidizer shall continue until the gaseous VOC concentration within the tank/pipeline is reduced to 5,000 ppmv or less, or is 10% or less of the lower explosion limit (LEL), whichever is less (B). The displaced gas shall remain vented to the control system for a length of time determined 	SJVAPCD (Rule 4623) SBAPCD (Rule 343)	
	by the following relationship (C): t = 2.3 V/Q	·	
·	Where: t = time (hours) V = headspace volume (ft³) Q = flowrate (ft³/hr)	PAACAID (David Care of David S)	
	 The operation of the thermal oxidizer shall continue until the gaseous VOC concentration within the tank/pipeline is reduced to 10,000 ppmv. 	BAAQMD (Regulation 8 Rule 5)	
	5. The operation of the thermal oxidizer shall continue until the gaseous VOC concentration within the tank/pipeline is reduced to 34,000 ppmv, measured as methane, or less than 50% of the LEL.	TCEQ (Title 30, Part 1, Chapter 115, Subchapter F, Division 3)	
NOx	Low NOx burner with emission concentration of 60 ppm @ 3% O ₂ or 0.073 lb/MMBtu	SMAQMD	
SOx	40 ppmv as H₂S at inlet	SCAQMD (Rule 431.1)	
PM10	No standard		
PM2.5	No standard	·	
СО	No standard		

⁽A) Items 1 - 5 are based on requirements of the degassing rules of the associated air districts/stage agencies. SMAQMD does not have a tank degassing rule or degassing requirements in District Rule 446 Storage of Petroleum Products (11-16-93). In order to ensure a safe working environment, the District will incorporate through the BACT mechanism a limit that reduces the concentration in the containers prior to venting into the atmosphere.

- (B) Based on the SCAQMD Rule 1149 Staff Report page 7 (http://www.aqmd.gov/home/governing-board/agendas-minutes, 4/08), the 5,000 ppm vapor concentration translates to a ten percent LEL already met by many degassing operations. SCAQMD Rule 1149 page 4 states that if a tank is taken out of service for maintenance, repair or removal, the California Code of Regulations title 8 Section 5157 prohibits entry into a hazardous atmosphere which includes flammable gas, vapor or mist in excess of 10 percent of its lower LEL. Therefore, according to the Rule 1149 staff report the 5,000 ppm concentration and 10% LEL are equivalent.
- (C) SCAQMD Rule 1149 was amended on 4/08 to remove this requirement from the rule and was replaced with the 5,000 ppm vapor concentration requirement. According to the 4/08 staff report, the 5,000 ppm concentration limit is more conservative. The time requirement equations assumes that the storage tanks contains no product or sludge when the degassing begins. The 5,000 ppm vapor concentration limit will better capture emissions from sludge and product residual remaining in the tanks, since it will take longer to achieve the 5,000 ppm concentration than the time calculated by the time equation. The vapor concentration standard will capture the majority of emissions created by product residual and sludge.

B. TECHNOLOGICALLY FEASIBLE AND COST EFFECTIVE (Rule 202, §205.1.b.):

Technologically Feasible Alternatives:

Any alternative basic equipment, fuel, process, emission control device or technique, singly or in combination, determined to be technologically feasible by the Air Pollution Control Officer.

The table below shows the technologically feasible alternatives identified as capable of reducing emissions beyond the levels determined to be "Achieved in Practice" as per Rule 202, §205.1.a.

Pollutant	Technologically Feasible Alternatives	
voc	No other technologies have been identified	
NOx	No other technologies have been identified	
SOx	No other technologies have been identified	
PM10	No other technologies have been identified	
PM2.5	No other technologies have been identified	
СО	No other technologies have been identified	

C. <u>SELECTION OF BACT</u>:

BACT for all other pollutants will be to require the use of natural gas or LPG as supplemental fuel because it will maintain pollutants at their current levels and no other technologically feasible alternatives were identified.

21	BACT FOR PORTABLE TANK/PIPELINE DEGASSING SYSTEM				
Pollutant	Standard	Source			
VOC	50 ppmvd @ 3% O ₂ as Hexane; the operation of the thermal oxidizer shall continue until the gaseous VOC concentration within the tank/pipeline is reduced to 5,000 ppmv, measured as methane, for at least one hour after degassing operations have ceased.	Achieved in Practice			
NOx	Low NOx burner with emission concentration of 60 ppm @ 3% O ₂ or 0.073 lb/MMBtu	Achieved in Practice			
SOx	Use of natural gas or propane/LPG as supplemental fuel; 40 ppmv as H₂S at inlet	Achieved in Practice			
PM10	Use of natural gas or propane/LPG as supplemental fuel	Achieved in Practice			
PM2.5	Use of natural gas or propane/LPG as supplemental fuel	Achieved in Practice			
СО	Use of natural gas or propane/LPG as supplemental fuel	Achieved in Practice			

D. <u>SELECTION OF T-BACT</u>:

The toxics at issue with this technology are VOCs. The control of VOCs through meeting the BACT standard will also control toxics found in the VOCs. Therefore, the BACT VOC controls are also the T-BACT controls.

APPROVED BY:

DATE:

2/22/19

Attachment A

Review of BACT Determinations published by Other Agencies

San Joaquin Valley Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 7.1.9*

Last Update 3/19/1999

Petroleum Production - Mobile Degassing Operation for Storage Tank with low H2S content, using a Thermal Oxidizer as a control device

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment		
voc		98% or greater control efficiency with 1. Thermal Oxidizer, 2. Catalytic Oxidizer, or 3. Carbon Adsorption System.			

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in s a state implementation plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source

Section I: AQMD BACT Determinations

Application No.: 384630

Equipment Category – Tank Degassing System

	GENERAL INFORMATION	r		
030 A			DATE: 3/1/2003	3
Α.	MANUFACTURER:			
₿.	TYPE:	C. MODEL:		
D,	STYLE Vacuum line and blowers		,	
E.	APPLICABLE AQMD REGULATION XI RULES: 1149	······································	·	
F,	COST: \$ (2000) SOURCE OF COS	T DATA:	····	
G.	OPERATING SCHEDULE: 24 HRS/DAY	7 DAYS	s/wk	WK9YR
2.	EQUIPMENT INFORMATION	[4	APP. NO.: 38463	0
A.	FUNCTION: Portable tank degassing system.			
В.	size/dimension/capacity: 2500 scfm max. air pul	rate		
C.	BLOWERS:	D. TOTAL FLOW	V RATE: 2500 sc	
E.	MATERIAL STORED/PROCESSED/HANDLED: air plus tank	Vanors	2,500 30	
F,	THROUGHPUT/PROCESS RATE/USAGE RATE: 2500 sofin 1			
3	GOMPANY INFORMATION	ļ		
AND THE PERSON NAMED IN		A	NPF. NO.: 38463	0
Α,	NAME: Envent Corp.			B. SIC CODE: 8711
C.	ADDRESS: 2187 Walnut Ave.			
	CITY: Signal Hill	STATE: CA	Z	P: 90806
D.	CONTACT PERSON: Thomas L. Kerscher	E.	PHONE NO.: 5	62-997-9465
4.	PERMIT INFORMATION	A	PP. NO.: 384631	0
Α.	AGENCY: SCAQMD	B. APPLICATION	TYPE: new con	struction
C.	AGENCY CONTACT PERSON: Hui Sung Choe	D.		09-396-2259
E,	PERMIT TO CONSTRUCT/OPERATE INFORMATION: P/C NO	# 7200gc	***************************************	
	CHECK IF NO P/C P/O NO	,r39970		CE DATE: 5/24/2001 CE DATE: 5/24/2001
F.	START-UP DATE: June 2001		·	3/24/2001

5.	EMISSION INFORMATION APP. NO.: 384630
A.	PERMIT.
A1.	hydrocarbon vapors, with exception of trace (<0.1 ppm) chlorinated petroleum hydrocarbon vapors, with exception of trace (<0.1 ppm) chlorinated hydrocarbons. VOC at outlet not to exceed 50 ppmv as hexane (measured hourly). Temperature at outlet of oxidizer to be at least 1400F in thermal mode, 600F in catalytic mode. Benzene at outlet not to exceed (ppmv limits based on distance, in meters, to nearest receptor): 25<50 .03, 50<75 .06, 75<100 0.11, 100<150 0.18, 150<200 0.28, 200<500 0.65, 500 or more 3.4. Minimum degassing time = 2.3 x V/Q, where V=tank volume and Q= volumetric suction rate (Rule 1149).
A2.	BACT/LAER DETERMINATION: Permit limits on VOC and oxidizer temperatures
A3.	basis of the Bact determination: The VOC concentration limit is consistent with 5000 ppm max. vapor concentration in the tank and 99.9% destruction efficiency, with a factor of 10 margin. The 99.9% destruction efficiency was based on AQMD's knowledge of similer oxidizers used in soil vapor recovery systems.
В.	CONTROL TECHNOLOGY
81.	MANUFACTURER/SUPPLIER: Envent
82.	Thermal oxidizer and catalytic oxidizer, Model EMTOS 2500
83.	DESCRIPTION: Natural gas or LPG fired with EPCON Model 3-DF-2500-H-T Low Nox Burner
B4.	CONTROL EQUIPMENT PERMIT APPLICATION DATA: P/C NO.: F39976 ISSUANCE DATE: 5/24/2001 SSUANCE DATE: 5/24/2001
B5.	WASTE AIR FLOW TO CONTROL EQUIPMENT: FLOW RATE: 2500 sofm ACTUAL CONTAMINANT LOADING: BLOWER HP:
B6.	WARRANTY:
B7,	PRIMARY POLLUTANTS: VOC
B8,	SECONDARY POLLUTANTS: NOx, CO
B9.	SPACE REQUIREMENT:
B10.	LIMITATIONS: B11. UNUSED
B12.	OPERATING HISTORY: The owner reports that the system has been used on 5 or 6 tanks to date, and the 50 ppmv VOC limit has been met in all cases.
B13.	UNUSED B14. UNUSED
C.	CONTROL EQUIPMENT COSTS
Ç1.	CAPITAL COST: CHECK IF INSTALLATION COST IS INCLUDED IN CAPITAL COST
	EQUIPMENT: \$ INSTALLATION: \$ (2000) SOURCE OF COST DATA:
C2.	ANNUAL OPERATING COST: \$ (2000) SOURCE OF COST DATA:
D.	DEMONSTRATION OF COMPLIANCE
D1,	STAFF PERMIFORMING FIELD EVALUATION: ENGINEER'S NAME: DATE:
D2.	ÇOMPLIANCE DEMONSTRATION:

5.	EMISSIC	NINFORMATIO	N 🔭	APP. No.: 384630							
D3,	VARIANCE;	NO, OF VARIANCES;	0	DATES:							
	CAUSES:	•	v								
D4.	VIOLATION:	NO. OF VIOLATIONS:	None since this	D/C data DATES:		·					
	CAUSES:		1 (one since un)	SI/C date	W-1						
D5.	MAINTENANCE RE	QUIREMENTS:	······································		De. U	NUSED					
D7.	SOURCE TEST/PERFORMANCE DATA RESULTS AND ANALYSIS:										
	DATE OF SOURCE	TEST:	•	CAPTURE EFFICIENCY:							
	DESTRUCTION EF	FICIENCY:		OVERALL EFFICEINCY:							
	SOURCE TEST/PE	RFORMANCE DATA:									
	OPERATING COND	ITIONS;									
	TEST METHODS:										

6: E COMMENTS

APP. NO.: 384630

TBACT was considered to be use of a thermal oxidizer. The original date of this listing was 12/18/01. An administrative change (A/N 405426, AQMD Permit reissued 9/6/2002) was added 3/1/2003, changing name of oxidizer manufacturer from EPCON to ENVENT..

Process Information - Details | RACT/BACT/LAER Clearinghouse | Clean Air Technolog... Page 1 of 1

http://cfpub.epa.gov/rbic/index.cfm?action=PermitDatail.ProcessInfo&facility_id=26108&PROCESS_ID=104329

Last updated on 9/14/2015

Technology Transfer Network

GREETHE-AFTEFACIONET O AND WESTERDITE OF THE WEST OF THE PROPERTY OF THE PROPE

Process Information - Details

For information about the pollutants related to this process, click on the specific pollutant in the list below.

BECHlorine New Search Countries Hashing Intermation Process List Process Information

Help

FINAL

RBLC ID: CA-1048
Corporate/Company: ENVENT CORP
Facility Name: ENVENT CORP

Process: TANK DEGASSING SYSTEM

Primary Fuel: NATURAL GAS

Throughput:

Process Code: 99,999

Pollutant Information - List of Pollutants

HEDEL CONTRACTOR OF THE PROPERTY OF THE PROPER

Pollutant Primary Emission Limit

Basis Verified

Hexane 50,0000 PPMVD

BACT-PSD

UNKNOWN

Process Notes:

ftyne epa.gov/rbic/index.cfm7 Pärffigtgetall.Pollutanttnfo&Facility_ID=26108&Process_ID=104329&Pollutant_ID=101&Per_Control_Equipment_Id=14093&updated on 9/14/2015 Technology Transfer Network

GLEAR BEALT EPARTOLIS O AND CARACTER OF THE WEST TECHNOLOGY I JANUARY RESIDENCE TEST TO BE CHARACTER OF THE STATE OF THE S

Pollutant Information

Click on the Process Information button to see more information about the process associated with this Or click on the Process List button to return to the list of processes. Pollurain laformation

> Help FINAL

RBLC ID: CA-1048 Corporate/Company: ENVENT CORP Facility Name: ENVENT CORP

Process: TANK DEGASSING SYSTEM

Pollutant: Hexane

CAS Number: 110-54-3

Pollutant Group(s): Hazardous Air Pollutants

(HAP), Organic Compounds (all), Volatile Organic

Compounds (VOC),

Substance Registry System: Kexane

Pollution Prevention/Add-on Control Equipment/Both/No Controls Feasible; P2/Add-on Description: THERMAL OXIDIZER AND CATALYTIC OXIDIZER

Test Method:

Unspecified

EFA/DAR Methods All Dther Methods

Percent Efficiency:

Compliance Verified: Unknown

EMISSION LIMITS:

Case-by-Case Basis: BACT-PSD Other Applicable Requirements: N/A Other Factors Influence Decision: Unknown Emission Limit 1: 50.0000 PPMVD

Emission Limit 2:

Ó Standard Emission Limit: o

COST DATA:

Cost Verified? No Dollar Year Used in Cost Estimates: 2005 Cost Effectiveness: 0 \$/ton

Ingremental Cost Effectiveness: Pollutant Notes:

0 \$/ton

Previous Page

COMPREHENSIVE REPORT Report Date:09/14/2015

RBLC ID:	CA-1048 (final)	Yata Data at 1 T	
	Car 1010 (Initi)	Date Determination L Undated:	11/04/2005
Corporate/Company Name:	ENVENT CORP	Permit Number:	384630
Facility Name:	ENVENT CORP	Permit Date:	05/24/2001 (actual)
Facility Contact:		FRS Number:	NOT FOUND
Facility Description:	•	SIC Code:	
Permit Type:	A: New/Greenfield Facility	NAICS Code:	812990
Permit URL:			
EPA Region:	9	COUNTRY:	USA
Facility County:	LOS ANGELES		
Facility State:	CA		
Facility ZIP Code:	90806		
Permit Issued By:	SOUTH COAST AQMD, CA (Agency Name) MR. AL BAEZ(Agency Contact) (909)396-2516 abacz@ac	und.gov	
Other Agency Contact nfo:	SOUTH COAST AQMD, MARTIN KAY, 909-396-3115, MK		•
Permit Notes:	CARB ID: 651.0, OPERATING PERMIT DATE: 05-24-2001, CONSTRUCTION TECH STATUS; BACT DETERMINATION	STARTUP DATE: 06-01-2001 NEW COIN NO SOURCE TEST AVAILABLE	ISTR MODIFICATION:

ı	Process/Pollutant Information

PROCESS NAME:

TANK DEGASSING SYSTEM

Process Type:

99.999 (Other Miscellaneous Sources)

Primary Fuel: Throughput:

NATURAL GAS

Process Notes:

POLLUTANT NAME:

CAS Number:

Hexane 110-54-3

Test Method:

Unspecified

Pollutant Group(s):

(Hazardous Air Pollutants (HAP), Organic Compounds (all), Volatile Organic Compounds (VOC))

Emission Limit 1: Emission Limit 2:

50.0000 PPMVD

Standard Emission:

Did factors, other then air pollution technology considerations influence the BACT decisions: U

Case-by-Case Basis:

BACT-PSD

Other Applicable Requirements: N/A

Control Method:

(A) THERMAL OXIDIZER AND CATALYTIC OXIDIZER

Est. % Efficiency:

Cost Effectiveness: 0 \$/ton Incremental Cost Effectiveness: 0 \$/ton

Compliance Verified:

Pollutant/Compliance Notes:

Previous Page

California Environmental Protection Agency

Par Resources Board

BACT Determination Detail

Category

Source Category:

Tank Degassing System

SIC Code

NAICS Code

81299

Emission Unit Information

Manufacturer:

Epcon

Type:

Model:

EMTOS 2500

Equipment Description:

2500 scfm max. air pull rate

Capacity / Dimentions

Fuel Type

Natural Gas

Multiple Fuel Types

Or LPG fired

Operating Schedule (hours/day)/(days/week)/ (weeks/year)e

Variable (24/7/)

Function of Equipment

Portable tank degassing system

VOC Limit

50

VOC Limit Units

ppmv as hexane

VOC Average Time

VOC Control Method

VOC Control Method Desc

Thermal Oxidizer and catalytic oxidizer

VOC Percent Control Efficiency

National Company of

VOC Cost Effectiveness (%/ton)

VOC Incremental Cost Effectiveness (%/ton)

VOC Cost Verified (Y/N)

VOC Dollar Year

Project / Permit Information

Application/Permit No.:

384630

Application Completeness

Date:

New

New Construction

Construction/Modification:

05-24-2001

PTO Date:

ATC Date:

05-24-2001

Startup Date:

06-01-2001

Technology Status:

BACT Determination

Source Test Available:

Νo

Source Test Results:

Facility / District Information

Facility Name:

Envent Corp

Facility Zip Code:

90806

Facility County:

Los Angeles

District Name:

South Coast AQMD

District Contact:

Martin Kay

Contact Phone No.:

909-396-3115

Contact E-Mail:

mkay@aqmd.gov

Notes

Notes:

Report Error In Determination

Attachment B SCAQMD Source Test Results

Revised Table 4-1 VC-301 Summary of Detailed Results Temperature Set Point 1500 °F PSC Industrial Outsourcing

Test Number Dare 14 San 1 San		(Cur) (Cur) (1/10/14 (1/10-1710	and a	Run 2 Gali		Rui 3 Ontier 3 1/10/14 5 1	Kan (Inje) - 1/10/14	40,00044			Exbellit Average
	GIA C			31.1921519		103/1/17	130-131-1236	41400-1800	1629,1729		
O ₂ , % volume dry		14.0		13.9		13.8	20.9	20,9	20.9		13.9
O ₂ , % volenie wet		13.1		13.0		13.0	20,6	20.7	20.7		13.0
CO ₂ , % volume dry		4.4		4.5		4.5	0,05	.0.05	0.05		4.5
CO ₂ , % volunte wat		4.1		4.2		4.2	0,0	0.0	0.0		4.2
NO _X , ppm volume dry		6.3		4.6		5.0		٠			5.3
NO _X , ppm volunie wet		5.9		4.3		4.7					
VO _X , ppmvd @ 3% O ₂		16.2		11.8		12.6					5.0
YOg, lb/hras NO2		0.24		0.17		0.20					13,6
NO _X , lb/day as NO ₂		5,76		4.15		4.79					0.2
VO _X , lb/MMBtu as NO ₂		0.02		0.01		0.02					4,9 0.0
O, ppm volume dry		23.91		13.2		18:0					
O, ppm volume wet		22,3		12,4		16,9		•			18.4
O, ppmed@3% O ₁		61.8		33.8		45.6					17.2
CO, lb/hr		0.56		0.30		0.44					47.0
O, lb/day		13,34		7.21		10.52					9.4
CO, 15/MMBtu		0.05		0,02		0.03					10,4 0.0
OC, ppm volume dry as C	<	6,42	40	6.41	κ.	6,40	67,958	65,764	60.004		
OC, ppm volume wet as C	<	6.00	ė.	6.00	<	6,00	67,023	65,061	67,275	*	6.4
OC, ppm volume wet as Propane	*	2.0	₹,	2.0	<	2:0	22,341	21,687	66,477	<	6.0
OC, Ib/licas C	**	0.0642	~	0.0627	<	0.0671	288	283	22,159 281	<	2.0
OC, lb/day as C	5	1.540	</td <td>1.506</td> <td><</td> <td>1.610</td> <td>6,913</td> <td>6,794</td> <td>6,743</td> <td>*</td> <td>0.06</td>	1.506	<	1.610	6,913	6,794	6,743	*	0.06
DE VOC, Ib/hr as C		99,98		99,98		99,98		M\$1'4'.1	. W. T. T. U	-74	1.55
DE VOC, lb/day as C		99.98		99.98		99.98			,		99.98
											99.98
ol flow rate (Qad) decim - pitot		5,331		5,223		5,589	2,261	2,296	2,233		5,381
iring Rate MMBtw/Hr - pitot		12.175		12,042		13.008		*** *			12.4

Revised Table 4-1 VC-303 Summary of Detailed Results Temperature Set Point 1500 °F PSC Industrial Outsourcing

Teac Spoiller (1) and the little of the litt		Rim LOure 1901a 1911-140		16in 20in 1511,174 1431-163		Rut) Onde 14 (4) 1210-1810	RUN LINE 100 GA 1311/HLD	6 an 2 fulci 131754 1532-1612			- Kahipu Average
O ₂ , % volume dry		14.3		14,2	1 and the property	14,2	20.9	20,9	20.9		EMPONIALE.
O2, % volume wet		13.4		13,4		13.4	20,5	20.7	20.7		14.2
CO ₂ , % volume dry	•	4.2		4.3		4.3	0.05	0.05	0.05		13,4 4,3
CO ₂₁ % volume wet		4.0		4.0		4.0	0,0	0,0	0.0		4.0
NO _X , ppm volume dry		16.0		17.2		14.3		**			
NO _x , ppm volume wet		15.0		16.2		13,5					15.8
NO _x , ppmvd @ 3% O ₂		43.1		46,1		38,4					14.9
NO _X , lb/hr aa NO ₂		0.38		0.42		0.36	-				42.5 0.4
NO _X , Ib/day as NO ₂		9.10		10.13		8.54					9.3
NO _X , lb/MMBtu as NO ₂		0.05		0.06		0.05					0.052
CO, ppm volume dry		28.26		19.6		29,4					
CO ₁ ppm volume wet		26.6		18.4		27.7					25.8
CO, ppmvd @ 3% O ₂		76.2		52.5	,	78.8	•	•			24.2 69.2
CO, Ib/hr		0.41		0.29		0.44					0.4
CO, lb/day		9.79		7.02		10.68					9,2
CO, lb/MMBto		0.06		0.04		0.06		· .			0.051
OC, ppm volume dry as C	ë	6.38	×	6,38	- €	6.36	72,682	71.950	72,968	:<	6.4
OC, ppm volume wet as C	· K	6.00	Κ.	5.00	<	6.00	71,375	71,316	72,231	~	6.0
VOC, ppm volume wet as Propane	*	2.0	κ.	2.0	4	2.0	23,792	23,772	24,077	*	2.0
VOC, lb/hr as C	*7	0,0395	5	0,0408	4	0.0413	160	153	160	4	0.041
/OC, lb/day as C	×	0.949	*	0,980	* ***	0.991	3,840	3,681	3,836	<	0.973
6 DE VOC, lb/hr as C		99.98		99.97		99.97	NA	NA	NA		99,97
& DE VOC, lb/day as C		99,98		99,97		99.97	NA	NA	NÁ		99.97
of flow rate (Qad) dsofm - pitot		3,313		3,421		3,470	1,177	1,140	1,171		3,401
iring Rate MMBtu/Hr - pitot	S	7.249		7.539		7.637		*****	*4***		7.48

Attachment C Conversion from gr/100 scf to ppmv

Conversion from gr/100 scf to ppmv

Molecular Wt. for $H_2S = 34 \text{ lb/lb-mole}$

District Standard Conditions are: Temp = 68 °F (SMAQMD, VCAPCD), Pressure = 14.7 psia = 60 °F (SBACPD)

Molar Specific Volume of a gas at 68 °F = T * R/P

= [(459.6 + 68 °F) * (10.7316 ft³ * psi/°R * lb- mol)]/14.7 psi

=385.2 scf/lb-mole

ppmv as $H_2S = 50$ gr $H_2S/100$ scf x (10⁶ scf fuel/MM scf fuel) x (lb $H_2S/7000$ gr H_2S) x (385.2 scf H_2S/lb -mole H_2S)/(34 lb H_2S/lb -mole H_2S)

= 809 ppmv as H₂S